
Cooccurrence analysis between

high and low-rank tags

Fig. 7 shows a table where the occurrence of 30 high-rank (low-frequency) tags
is related to the occurrence of the 15 lowest-rank (highest-frequency) tags. All
the tags under study are cooccurring with the tag blog and the dataset used for
the analysis is the same as the one used in Fig. 2. The cooccurrence analysis
is performed as follows: given a high-rank tag X, all resources tagged with X
(within the above dataset) are selected, and the cooccurrence frequencies of X
with each of the 15 top-ranked (most frequent) tags are recorded. Thus, each
row of the table associates a tag X with the corresponding (normalized) cooccur-
rence histogram. This provides a statistical characterization of tag X in terms of
the top-ranked tags, regarded as a natural basis for categorization (or semantic
“grounding”). Fig. 8 graphically illustrates such a “tag fingerprint” for 5 high-
rank tags, arbitrarily chosen. This analysis is aimed at probing the existence of
nontrivial cooccurrence relationships that might be ascribed to semantics and –
possibly – to the emergence of a self-organized hierarchy of tags. As shown by
the bold numbers in Fig. 7, as well as by the graph in Fig. 8, high-frequency
(low-rank) tags do not trivially cooccur with most of the low-frequency (high-
rank) tags — on the contrary, the cooccurrence profile of the latter is peaked
in correspondence of specific, semantically related tags (economics and law with
politics, for example, see Fig. 8). Moreover, several low-frequency (high-rank)
tags never cooccur with some of the highest-frequency (low-rank) tags, as shown
by the several zeros in Fig. 7. This suggests that high-frequency tags partition
– or “categorize” – the resources marked by tags of lower frequency. Given that
our definitions of “high-rank” and “low-rank” are somehow arbitrary, and given
the self-similar character of tag association we observed (Fig. 3), we expect our
observations to be representative of a general and complex semiotic structure
underlying folksonomies.
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design web news music rss css daily art politics tech technology blogs software media programming

inspiration 0.392 0.159 0.026 0.011 0.000 0.206 0.011 0.132 0.000 0.011 0.021 0.032 0.000 0.000 0.000

socialsoftware 0.066 0.242 0.022 0.011 0.099 0.044 0.000 0.022 0.000 0.055 0.055 0.121 0.176 0.077 0.011

economics 0.000 0.119 0.090 0.000 0.000 0.000 0.119 0.000 0.552 0.030 0.045 0.030 0.000 0.015 0.000

opensource 0.081 0.144 0.108 0.018 0.063 0.009 0.027 0.009 0.000 0.054 0.045 0.090 0.243 0.036 0.072

computer 0.167 0.080 0.093 0.013 0.027 0.073 0.033 0.020 0.020 0.080 0.133 0.060 0.127 0.007 0.067

python 0.031 0.138 0.077 0.000 0.092 0.046 0.000 0.000 0.000 0.015 0.046 0.000 0.092 0.000 0.462

tagging 0.234 0.213 0.021 0.000 0.085 0.085 0.021 0.000 0.021 0.021 0.085 0.043 0.170 0.000 0.000

comics 0.089 0.089 0.089 0.054 0.000 0.018 0.054 0.482 0.018 0.000 0.036 0.054 0.000 0.018 0.000

research 0.096 0.135 0.096 0.000 0.058 0.000 0.058 0.038 0.038 0.019 0.154 0.077 0.096 0.096 0.038

law 0.012 0.061 0.134 0.037 0.000 0.000 0.110 0.000 0.378 0.024 0.195 0.049 0.000 0.000 0.000

hack 0.080 0.080 0.069 0.034 0.057 0.046 0.126 0.023 0.034 0.161 0.103 0.057 0.069 0.023 0.034

xhtml 0.311 0.262 0.016 0.004 0.016 0.336 0.000 0.004 0.000 0.008 0.012 0.004 0.012 0.004 0.008

humour 0.125 0.042 0.125 0.000 0.000 0.000 0.125 0.208 0.083 0.083 0.042 0.000 0.000 0.042 0.125

management 0.147 0.191 0.000 0.000 0.029 0.015 0.118 0.015 0.000 0.015 0.103 0.103 0.162 0.029 0.074

movies 0.080 0.080 0.240 0.120 0.000 0.000 0.100 0.140 0.080 0.000 0.020 0.100 0.000 0.040 0.000

diy 0.151 0.081 0.047 0.023 0.000 0.000 0.081 0.186 0.012 0.198 0.093 0.047 0.058 0.012 0.012

life 0.231 0.000 0.000 0.019 0.000 0.000 0.096 0.250 0.058 0.058 0.250 0.000 0.019 0.000 0.019

tag 0.125 0.354 0.000 0.000 0.250 0.021 0.000 0.021 0.000 0.021 0.062 0.021 0.083 0.021 0.021

maps 0.200 0.150 0.050 0.000 0.050 0.000 0.000 0.050 0.050 0.250 0.050 0.050 0.050 0.050 0.000

ideas 0.167 0.103 0.090 0.000 0.026 0.077 0.077 0.051 0.038 0.064 0.103 0.077 0.051 0.064 0.013

architecture 0.526 0.063 0.074 0.011 0.000 0.000 0.095 0.137 0.000 0.000 0.032 0.011 0.011 0.000 0.042

organization 0.000 0.042 0.000 0.021 0.000 0.000 0.479 0.021 0.000 0.062 0.125 0.021 0.146 0.042 0.042

plugin 0.156 0.281 0.000 0.031 0.031 0.031 0.000 0.000 0.000 0.000 0.031 0.031 0.312 0.031 0.062

blogroll 0.054 0.089 0.107 0.071 0.054 0.000 0.054 0.054 0.071 0.089 0.107 0.125 0.054 0.018 0.054

information 0.065 0.280 0.172 0.000 0.097 0.022 0.022 0.011 0.043 0.054 0.075 0.054 0.054 0.032 0.022

articles 0.159 0.136 0.091 0.011 0.000 0.068 0.057 0.011 0.091 0.057 0.080 0.045 0.091 0.045 0.057

resource 0.287 0.202 0.032 0.032 0.032 0.191 0.021 0.032 0.011 0.053 0.011 0.011 0.032 0.000 0.053

illustration 0.339 0.104 0.009 0.026 0.000 0.078 0.017 0.400 0.000 0.000 0.000 0.017 0.009 0.000 0.000

mobile 0.021 0.085 0.106 0.021 0.021 0.000 0.128 0.106 0.000 0.106 0.255 0.043 0.064 0.043 0.000

liberal 0.000 0.000 0.125 0.000 0.000 0.000 0.067 0.000 0.692 0.000 0.000 0.058 0.000 0.058 0.000

Figure 7: Cooccurrence table: columns correspond to the 15 top-ranked tags
cooccurring with blog, in descending order of frequency from left to right. Rows
correspond to 30 low-frequency tags cooccurrinng with blog (frequencies ranking
between 100th and 200th). Each row is a normalized cooccurrence histogram
representing a “categorization” of the corresponding tag in terms of the top-
ranked tags. Numbers in red (bold face) denote cooccurrence probabilities in
excess of 25%. Zeros (no cooccurrence) are marked in blue (bold face).
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Figure 8: Cooccurrence patterns for 5 of the low-frequency (high-rank) tags of
Fig. 7 (see legend at the top). The colored bars display the “fingerprint” of the
selected tags in terms of their cooccurrence with the 15 top-ranked tags (the same
ones reported in the top row of Fig. 7).
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Role of the Parameters in the Yule-Simon

Process with Memory

Here we investigate numerically the effect of the model parameters on the statis-
tical properties of the simulated stream of tags, namely the the frequency-rank
distribution P (R) and the frequency probability distribution P (k).
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Figure 9: The behavior of our Yule-Simon process with a fat-tailed memory kernel
is shown above for typical values of the model parameters: probability p = 0.05,
memory parameter τ = 200, initial number of words n0 = 50, and a simulated
time t = 5 · 104. The frequency-rank distribution P (R) (left panel) displays a
power-law tail for high ranks and a low-rank flattening. The exponent of the
power law is higher than 1, in contrast to the original Yule-Simon process, where
its value is 1 − p. The corresponding frequency probability distribution P (k)
(right panel) displays an overall power-law dependence with a sharp fall at high
frequencies, corresponding to the low-rank flattening of the P (R). All curves
were computed by averaging 50 realizations of the process with the same set of
parameter values.
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For completeness we report also the experimental frequency distribution cor-
responding to the frequency-rank curves shown in the Fig. 2b. Here the noisy
character of the last bins is even more evident than in the model.

100 101 102 103 104

k

10-8

10-6

10-4

10-2

100

P(
k)

"ajax"
"blog"
"blogs"
"xml"

Figure 10: Tags frequency distribution corresponding to the frequency-rank
curves shown in the Fig. 2b of the main text.
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Figure 11: Effect of τ on the (normalized) frequency-rank distribution P (R).
For τ = 0 (left panel), P (R) displays a stretched exponential dependence on
the rank R (red curve), as predicted by a mean-field master equations approach.
For τ > 0 (right panel, τ = 200) the distribution develops a power-law tail (red
line) and retains the low-rank flattening. τ also appears to control a crossover
from the stretched exponential behavior we observe for τ = 0 to the power-law
tail behavior we observe for large τ The values of the parameters are p = 0.05,
n0 = 50, t = 5 · 104. All curves were computed by averaging over 50 realizations
of the process.
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Figure 12: Effect of p on the (normalized) frequency-rank distribution P (R) and
on the frequency probability distribution P (k), for a fixed value of τ = 50. Just as
in the simple Yule-Simon process, p affects the slope of the power-law tail of P (R)
(left panel). Conversely, the slope at low ranks (i.e. the low-rank flattening) is
not significantly affected by the value of p. In terms of P (k) (right panel), changes
in p affect the high-frequency behavior of the distribution, with high-frequency
tags becoming less and less likely for increasing values of p. Parameter values
are n0 = 50 and t = 51000, and a transient consisting of the first 1000 words
was discarded. All curves were computed by averaging over 50 realizations of the
process.
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Figure 13: Tag-tag correlations for simulated data. The autocorrelation
function C(∆t, tw) (see main text) is computed over three consecutive and equally
long (30000 tags each) subsets of a simulated tag stream, starting respectively at
tw = 1 · 104, tw = 4 · 104 and tw = 7 · 104. The values of the model parameters
are p = 0.06, τ = 100, n0 = 100, t = 1.1 · 105, and an initial transient of 104

tags was discarded. Short-range correlations are clearly visible, decaying towards
a long-range plateau value. The solid black lines are obtained by fitting the
simulated autocorrelation function with C(∆t, tw) = A1 +A2/(∆t+ τ), and show
that the chosen form of the memory kernel induces the 1/∆t correlations we
observe in experimental data (see main text). We want to remark that while the
correlations in the simulated stream have the correct dependence on the lag ∆t,
the plateau value reached for ∆t� 1 decreases with time, in contrast to what we
experimentally observe. This difference can be understood by observing that for
∆t � 1 we have C(∆t, tw) ' ∑R=Rmax(T,tw)

R=1 P 2
T,tw(R), so that the plateau value

is sensitive to the total number of distinct tags, i.e. the maximum rank Rmax.
Our simple model assumes that the rate of creation of new tags (p) is a constant,
so that Rmax increases linearly with the time t. On the other hand, we have
experimental evidence (Fig. 14) that the growth of Rmax is actually sub-linear,
so that our model cannot possibly reproduce the correct time dependence of the
plateau value of C(∆t, tw) (i.e. the long-term correlations).

8



10-3 10-2 10-1 100

t / tmax

10-2

10-1

100

N
 / 

N
m

ax

"blog"
"ajax"
"xml"
(t / tmax)

2/3

Figure 14: Accumulation of tags. We select a tagX and study how the number
N of distinct tags co-occurring with X increases as a function of the total number
t of tags co-occurring with X (the intrinsic “time” of the system). A sub-linear
growth behavior can be observed for all the tags under study. Here we display the
experimental data for three different tags (colored curves): on rescaling N and t
by the values they assume at the end of the experimental time series, Nmax and
tmax, all the curves collapse on the power-law N/Nmax = (t/tmax)2/3 (solid black
line). N never approaches a stationary value, while its rate of change decreases
monotonically towards zero according to dN/dt ∼ t−1/3. The motivations of
this universal behaviour are still unknown and they cannot be predicted in a
self-consistent way in the framework of a purely statistical model (as ours) where
only the stream statistics matters. That is why we preferred to keep our model as
simple as possible not inserting any ad hoc assumption about the time-behaviour
of N . For a deeper comprehension of the observed phenomenology a model
embodying cognitive aspects is needed which is outside the scope of the present
investigation.

9



Continuum Description of the Yule-Simon

Process with Memory

The Model

We start with n0 words. At a generic (discrete) time step t, a new word may
be invented with probability p and appended to the text, while with probability
1 − p one word is copied from the text, going back in time by i steps with a
probability that decays with i as a power law (see Fig. 3 in the main text),

Q(i) =
C

τ + i
. (1)

C is a time-dependent normalization factor and τ is a characteristic time-scale
over which recently added words have comparable probabilities. The normaliza-
tion condition for the memory kernel Q(i) reads:

1 =
i=t∑
i=1

Q(i) =
i=t∑
i=1

C

τ + i
= C

i=t∑
i=1

1

τ + i
,

so that

C(t) =

(
i=t∑
i=1

1

τ + i

)−1

. (2)

In the following we will write the normalization factor as C, with no explicit
mention of its time dependence. We also define

α(t) ≡ (1− p)C(t) , (3)

and we will similarly refer to it as α.

Return Times

We assume that word X occurred at time t for the first time, and we ask what
is the probability P (∆t) that the next occurrence of X happens at time t + ∆t,
with ∆t ≥ 1.

If ∆t = 1, P (∆t) is the probability of replicating the previous word, i.e. the
product between the probability 1−p of copying an old word, and the probability
of choosing the immediately preceding word (i = 1) computed according to the
chosen memory kernel, Q(1) = C/(τ + 1). This gives

P (1) = (1− p)
C

τ + 1
=

α

τ + 1
. (4)

For ∆t > 1, P (∆t) can be computed as the product of the probabilities of
not choosing word X for ∆t− 1 consecutive steps, multiplied by the probability
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of choosing word X at step ∆t. In order not to choose word X at the first
step, one has to either append a new word (probability p) or copy an existing
word (probability 1 − p) which is not X (probability 1 − C/(τ + 1)). Thus, the
probability of not choosing word X at the first step is

p+ (1− p)
(
1− C

τ + 1

)
,

and similarly the probability of not choosing word X at step i is

p+ (1− p)
(
1− C

τ + i

)
,

under the approximation that C is constant from step to step, i.e. ∆t � t.
Finally, under the same approximation, the probability of choosing word X at
step i = ∆t is (1− p)C/(τ + ∆t).

Putting everything together, for ∆t > 1, we can write the return probability
as the product

P (∆t) '
[
p+ (1− p)

(
1− C

τ + 1

)]
· (5)[

p+ (1− p)
(
1− C

τ + 2

)]
·[

p+ (1− p)
(
1− C

τ + 3

)]
·

· · ·
·
[
p+ (1− p)

(
1− C

τ + ∆t− 1

)]
·
[
(1− p)

C

τ + ∆t

]
.

Taking the logarithm of P (∆t), we can write the above product as the sum over
steps i = 1, 2, . . . ,∆t− 1 :

lnP (∆t) =
∆t−1∑
i=1

ln
[
p+ (1− p)

(
1− C

τ + i

)]
+ ln

(1− p)C

τ + ∆t
= (6)

=
∆t−1∑
i=1

ln

[
1− (1− p)C

τ + i

]
+ ln

(1− p)C

τ + ∆t
=

=
∆t−1∑
i=1

ln
(
1− α

τ + i

)
+ ln

α

τ + ∆t
=

' −α
∆t−1∑
i=1

1

τ + i
+ ln

α

τ + ∆t
,

where we used Eq. 3 and the fact that α� 1 for t� 1.
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Case τ = 0

For τ = 0, Eq. 6 becomes

lnP (∆t) ' −α
∆t−1∑
i=1

1

i
+ ln

α

∆t
, (7)

which allows us to rewrite the harmonic sum in terms of the digamma function
ψ0:

∆t−1∑
i=1

1

i
= γ + ψ0(∆t) , (8)

where γ = 0.577216 . . . is the Euler-Mascheroni constant. On using the expansion

ψ0(z + 1) ' ln z +
1

2z
−

+∞∑
n=1

B2n

2n z2n
(9)

and assuming ∆t� 1, we can drop all terms but the logarithmic one and write:

lnP (∆t) ' −α (γ + ln ∆t) + ln
α

∆t
. (10)

Thus, our approximated expression for the return probability is:

P (∆t) = eln P (∆t) = e−γα · exp(−α ln ∆t) · α
∆t

= (11)

=
α

∆t
e−γα exp( ln ∆t−α) =

= α e−γα ∆t−α−1 ,

derived under the assumption that t � ∆t � 1. The estimated value of P (∆t)
depends on time through α, so that the probability distribution of intervals ∆t
is non-stationary.

Average Return Time (τ = 0)

At any given time t, the characteristic return time < ∆t > can be computed by
using Eq. 4 and Eq. 11:

< ∆t > =
t∑

∆t=1

P (∆t) ∆t ' (12)

' α e−γα
∫ t

1
d(∆t) ∆t−α =

' α e−γα

1− α
t1−α .
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Rate Equation

Let’s focus on a given word i which has frequency ki at time t. In a continuum
description, its frequency will change according to the rate equation,

dki

dt
= (1− p) Πi , (13)

where 1 − p is the usual probability of choosing an old word, and Πi is the
probability of picking up a previous occurrence of word i, given the times tj of its
past occurrences (j = 1, 2, . . . , ki). According to the memory kernel of Eq. 1, the
exact value of Πi is given by the following sum over the ki occurrences of word i:

Πi = C
j=ki∑
j=1

1

τ + (t− tj)
. (14)

Here we restrict ourselves to the case τ = 0. We adopt a mean-field approach
and assume that the above sum can be written as the product of the frequency
ki and the average value of the term (t− tj)

−1 over the occurrence times tj.

0 2000 4000 6000 8000
k

i

0

0.1

0.2

0.3

Πι

Figure 15: Rate Πi (Eq. 14) for a given word i having frequency ki at time t
(p = 0.05, n0 = 10, t = 30000).

As shown in Fig. 15, this is supported by numerical evidence, so that we can
write:

Πi = C
j=ki∑
j=1

1

t− tj
' C ki

〈
1

t− tj

〉
j

, (15)
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where <>j denotes the average over the ki occurrences of word i. Furthermore,
we assume that the average is dominated by the contribution of the most recent
occurrence of word i, at time tki

.〈
1

t− tj

〉
j

' 1

t− tki

We replace t− tki
with the typical return interval for word i, and use Eq. 12 to

estimate the latter, obtaining:〈
1

t− tj

〉
j

' 1

t− tki

' 1

< ∆t >
=

1− α

α e−γα
· 1

t1−α
, (16)

which has a (sublinear, as α > 0) power-law dependence on t and a slower time
dependence through α. Fig. 16 shows that the above expression captures the
correct temporal dependence of the average < t − tj >

−1 for a given frequency
ki, provided that a constant factor Ω is introduced, as follows:〈

1

t− tj

〉
j

' 1

Ω
· 1− α

α e−γα
· 1

t1−α
. (17)

The need for a corrective factor Ω is a consequence of our simplifying assumptions,
namely our mean-field approximation, the fact that we ignored all occurrences of
word i but the very last, and the approximations underlying our estimate of the
return time ∆t. Moreover, as shown in Fig. 16, Ω shows a weak dependence on
the frequency ki of the selected word i, especially for small values of ki. In order
to keep only the linear dependence of the kernel on ki we approximate Ω with its
average value over k, numerically estimated as Ω ' 1.61 (see Fig. 1). While this
is certainly a rather crude approximation, it appears to work remarkably well, as
we will show later.

We introduce Eq. 17 and Eq. 15, into the rate Eq. 13, obtaining:

dki

dt
' (1− p)C ki

〈
1

t− tj

〉
j

=
ki

Ω
· 1− α

e−γα
· tα−1 . (18)

We integrate Eq. 18, with the assumption of considering α constant, from time
ti, when word i appeared for the first time (with frequency 1) the the final time
t, when word i has frequency ki,∫ ki

1

dk′i
k′i

=
1− α

Ω e−γα
·
∫ t

ti
dt′ t′

α−1
. (19)

Performing the integration we get

ln ki =
1− α

Ωα e−γα
(tα − tαi ) , (20)
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Figure 16: Memory kernel of Eq. 17 averaged over the times of occurrence tj
and over about 2000 realizations of the process (p = 0.05, n0 = 10, t = 5 ×
103, 104, 2× 104, 3× 104, 5× 104). Values are shown for a word of given frequency
k = 200 (black dots), a word of frequency k = 500 (gray dots) and the averaged
over all frequencies (red dots, above). Numerical error bars are within the size of
data markers.

which can be written as

ki = exp
[

1− α

Ωα e−γα
tα
]
· exp

[
− 1− α

Ωα e−γα
tαi

]
= Ae−Ktαi , (21)

where we defined

K ≡ 1− α

Ωα e−γα
, A ≡ eKtα . (22)

Eq. 21 shows that ki has a stretched exponential dependence on ti. On solving
it for ti, we can define a characteristic time of appearance t∗ for a word that has
frequency k at time t,

t∗(k, t) =

[
ln(A/k)

K

]1/α

. (23)

We have dropped the index i, since both k and t refer no longer to a specific word
i (and Ω no longer refers to any specific word, as already mentioned).
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Probability Distribution of Frequencies

At time t, the fraction of word frequencies less than k is given by the cumulated
distribution P<(k). Let us define P>(t∗(k, t)) as the probability of observing an
appearance time in excess of t∗(k, t), and P<(t∗(k, t)) = 1−P>(t∗(k, t)). We have

P<(k) = P>(t∗(k, t)) = 1− P<(t∗(k, t)) . (24)

The probability P<(t∗(k, t)) is equal to the fraction of words which appeared
earlier than t∗(k, t): since we know that a new word appears with probability p
per unit time, the number of words that appeared earlier than t∗(k, t) is simply
pt∗(k, t), and their relative fraction is

P<(t∗(k, t)) =
p t∗(k, t)

n0 + pt
. (25)

The probability distribution for word frequencies P (k) can be computed as

P (k) =
∂P<(k)

∂k
=

p

(n0 + pt) (Kα) k

[
ln(A/k)

K

] 1
α
−1

, (26)

and is in good agreement with numerical evidence, as shown in Fig. 17.
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Figure 17: Probability distribution P (k) for the frequency of word occurrence.
Numerical data (dots, average over 50 realizations) are in excellent agreement
with Eq. 26 (solid line) (p = 0.05, n0 = 10, t = 30000, Ω = 1.61).
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Ranked Distribution of Frequencies

The rank R(k′) of a word with frequency k′ can be written in terms of the
frequency probability distribution as

R(k′) ' (n0 + pt)
∫ kmax

k′
P (k) dk .

Using Eq. 26 for P (k) and Eq. 24 for P<(k′), we write:

R(k′) = (n0 + pt)
∫ kmax

k′

∂P<(k)

∂k
dk = (27)

= (n0 + pt) [1− P<(k′)] = p t∗(k′, t) ,

showing that in our treatment of the process, the ratio R/p plays the role of a
characteristic time of arrival for a word. Inserting Eq. 23 into the above equation,
we get

R(k) ' p

[
ln(A/k)

K

]1/α

, (28)

and the ranked frequency distribution is a stretched exponential in R/p,

k(R) ' A exp

[
−K

(
R

p

)α]
. (29)

This can be normalized dividing by n0 + t, the total number of words at time t,
finally yielding the probability density for word rank R:

P (R) ' A

n0 + t
exp

[
−K

(
R

p

)α]
. (30)

Fig. 18 shows that the above equation is in fair agreement with numerical ev-
idence. Moreover, all the ranked distributions we observed for τ = 0 can be
reproduced accurately by a stretched exponential of the above form. It should
be noticed that the agreement in Fig. 18 is obtained without any explicit fitting
procedures since the value of the only free parameter Ω has been chosen with the
averaging procedure described above.
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Figure 18: Ranked probability distribution P (R). Numerical data (dots, average
over 50 realizations) are compared against the prediction of Eq. 30 (solid line)
(p = 0.05, n0 = 10, t = 30000, Ω = 1.61).

Conclusions

Before concluding several remarks are in order.

• We have presented a preliminary continuum approach to explain the be-
haviour of the Yule-Simon microscopic model with memory proposed in
the paper. The presence of a long-term memory kernel makes the rigorous
treatment non trivial. Our approach makes a certain number of assump-
tions, sometimes rough (but checked numerically), especially to guess the
functional form of the memory kernel both as a function of time and of
the frequency of a word. Nonetheless this approach allows for an excellent
agreement between theory and simulation for the frequency probability dis-
tribution P (k). This is somehow the signature that it is capturing some
essential features of the original microscopic model.

Our approach requires a single phenomenological parameter (Ω), for which
we have no theoretical estimates, at present. The rank probability dis-
tribution P (R) appears to be much more sensitive to the approximations
we made, but the agreement between numerics and theory is nevertheless
reasonable.

For τ = 0 no power-laws are observed in the tails of neither P (k) or P (R),
but rather we observe (both numerically and analytically) a slowly varying
slope in log-log plots.
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• Of course this analysis is still preliminary and it represents only a first
step towards a deeper comprehension of our model. In particular it will be
important to have a stronger control of the approximations made especially
for what concerns all the quantities (like α) slowly varying with time.

The whole approach can be in principle extended to the τ 6= 0 and work
is presently in progress to understand the role of this parameter. A lot of
questions arise, for instance: (I) what is the role of τ on long-time scales; (II)
does it only affect the dynamics on short time-scales mimicking the effect
of a Yule-Simon model without memory? (III) does the limit τ ' t falls in
the same universality class of the Yule-Simon model without memory?
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